IoT Agenda

December 13, 2017  12:01 PM

Internet of things: A lifeline for operators

Cees Links Profile: Cees Links
Consumer IoT, Internet of Things, iot, operators, Service providers, smart home

As cable and TV operators are losing subscribers to new competition, including streaming platforms like Netflix and Amazon Prime, as well as pay-TV providers like HBO and Showtime, operators must look for fresh revenue streams that will improve dismal churn rates and set a course for improving the bottom line for the coming years.

Many operators are rightly looking at the internet of things as the much-needed lifeline.

Estimates vary somewhat, but IoT numbers are staggering. Some 34 billion devices will be connected to the internet by 2020, up from 10 billion in 2015. IoT devices will account for 24 billion, while traditional computing devices (for example, smartphones, tablets and smartwatches) will make up the remaining 10 billion.

Advantages for operators

Operators are the primary provider of internet services for consumers. Many operators are also extending these internet services into Wi-Fi support, helping consumers install and maintain their internet connectivity throughout the home. As those consumers increase their adoption of IoT devices, they will become ever more attached and dependent on their internet connections — and by extension, the companies that provide them.

This puts operators in a prime position as the keepers of the keys to connectivity. Even better news? Operators already have a tremendous customer base, along with marketing and billing systems, call centers for support and trucks on the road. Some operators are already deploying security services bundled with other service subscriptions. The set-top box is the gateway for these service offerings, effortlessly connecting numerous home sense-and-control devices in one integrated set of smart home applications.

But there’s much more potential here. Smart home services like remote control doors, thermostats and lighting, all centrally monitored and controlled by the set-top box or gateway, represent enticing opportunities for cable and service operators.

These new, high-value services can provide increased customer loyalty along with additional revenues. By offering a turnkey solution, operators can position themselves as providing relatively inexpensive services — just a few additional dollars on top of the monthly fee already paid by subscribers.

Examples of smart home IoT services

Think of smart home IoT services as a smart home butler that assists residents in living their lives securely, more efficiently and comfortably. More than just a network of connected devices, this is an entire intelligent service that combines information from a diverse variety of sensing and input devices in a house, and enables easy management and control of the home’s systems and appliances.

The first step in creating this interconnected home is the use of various sensors that provide data to the cloud regarding the home’s environment, as well as the whereabouts of the individuals in the household. In addition to the immediate family members, grandparents, visitors and even pets can be included. This data is uploaded to an algorithm in the cloud, stored and analyzed via data analytics to create behavior patterns so the system learns how the residents live — where they normally are during specific times, who is present and when.

If the kids get home from school at 3:00 p.m., and the system senses someone entering the home at 11:00 a.m., the anomaly is recognized and will send an alert to the parents. If the system knows that everyone is out of the home by 8:00 a.m. and doors are left unlocked, it can automatically close and lock them. If the heating system has been left on and the home is empty, the smart home system recognizes the issue and turns it off, improving energy efficiency.

Suppose the water heater in the basement springs a leak. In addition to recognizing the problem and sending an alert to the homeowner, the system can turn off the water flow, limiting the damage and the expense of wasting water and energy. The list of potential services goes on and on.

Nothing comes for free

To capitalize on their advantages, operators must invest in their wireless networks to keep pace with the increased data usage and transmission from connected devices. They must also learn how to deal with data and understand data analytics. Finally, operators must retrain installation and support crews to not only place set-top boxes, but convert consumers’ homes into smart homes.

Setting the course for long-term success

In short, IoT represents tremendous opportunities for operators. It enables them to retain more current subscribers, attract new subscribers and provide new services.

There are also less tangible benefits. By digging into IoT services, operators will increase their customer knowledge, leading to ideas for new services. Operators will be known as innovators, leaders and early adopters, which will increase loyalty and set the stage for longer-term success.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

December 13, 2017  11:53 AM

Five requirements of a leading IoT edge platform

Dima Tokar Dima Tokar Profile: Dima Tokar
Edge analytics, Internet of Things, iot, IoT analytics, IoT devices, IoT hardware, IoT platform

Enterprises and the public sector worldwide are looking for ways to increase security, improve productivity, provide higher levels of service and reduce maintenance costs. Many of them are using IoT technologies to improve their critical business processes or to drive innovation across their product lines. According to MachNation forecasts and the IoT Edge ScoreCard 2018, worldwide IoT application enablement revenue will be $1.8 billion in 2017 growing to $64.6 billion by 2026 at a compound annual growth rate of 49%.

According to our definitions, IoT edge computing is a technology architecture that brings certain computational and analytics capabilities near the point of data generation. IoT edge computing enables certain processes to occur in an optimal location to create more secure, reliable and scalable IoT deployments. An IoT deployment using edge computing takes advantage of connected IoT devices or gateways that offer functionality in areas such as device integration, data ingestion, data processing, analytics and device management.

Since the edge is critical to IoT success, leading IoT platform vendors must provide edge capabilities. In this post, I will discuss five required capabilities of edge platforms.

Five capabilities of IoT edge platforms

MachNation research shows that IoT edge platforms excel in five capabilities. Vendors that have a complete set of capabilities for addressing edge requirements offer extensive protocol support for data ingestion, robust capability for offline functionality, cloud-based orchestration capabilities to support device lifecycle management, hardware-agnostic scalable architecture and comprehensive analytics and visualization tools.

Extensive protocol support for data ingestion
Enterprise IoT systems need an edge platform that supports a wide ecosystem of devices and best-of-breed hardware vendors. Given the many verticals and use cases being transformed by IoT, we expect an extremely heterogeneous mix of devices that will be used to gather machine data and make it available to other IoT systems. In addition, there are at least several dozen well-accepted standards used in enterprise applications and a long list of proprietary ones that are being used in custom and off-the-shelf point products.

Leading IoT platforms must support an extensive mix of IoT devices that have myriad protocols for data ingestion. Platforms with a focus on edge provide a comprehensive set of protocols that can be used out-of-the-box. The list of protocols for industrial-minded edge platforms generally includes brownfield deployment staples such as OPC-UA, BACNET and MODBUS as well as more current ones such as ZeroMQ, Zigbee, BLE and Thread. Equally as important, the platform must be modular in its support for protocols, allowing customization of existing and development of new means of communicating with connected assets.

Finally, leading vendors provide encryption, authentication and data protection functionality to address elevated enterprise security requirements of connected mission-critical hardware. Retrofitting brownfield deployments to secure machine data at the source is a capability exclusive to leading IoT edge platforms.

Robust capability for offline functionality
Enterprise IoT systems need an edge platform with robust capabilities for offline functionality for resiliency, performance and reduction in operating costs. To save energy or minimize risks due to connectivity interruptions, IoT assets are not always connected to the cloud. It is becoming increasingly clear that most, if not all, enterprise IoT deployments will lean on edge processing technologies. The technologies make it possible to process a large amount of data generated by connected assets, adhere to low-latency requirements of industrial systems and meet established service-level agreements of mission-critical assets.

According to MachNation research, leading IoT edge platform vendors provide offline capabilities in three functional areas: data storage with normalization, event processing using rules and machine learning algorithms, and a set of edge-based integrations with local enterprise systems.

First, edge systems need to offer two types of data normalization and storage. They must offer these services to (a) successfully clean noisy sensor data and (b) support intermittent, unreliable or limited connectivity between the edge and the cloud. Providing both makes the overall system more reliable and cost-effective.

Second, a flexible event processing engine at the edge makes it possible to generate insight from machine data. By analyzing this data with machine learning tools, enterprises can identify behaviors that are valuable to solutions including predictive maintenance and cybersecurity. In addition, by applying a set of rules to this data, enterprises can automatically send fault alerts to identify troubles in real time.

Third, an IoT edge platform should integrate with local systems to optimize existing operational processes. Enterprise locations including manufacturing facilities, warehouses, oil refineries and remote field sites have many local systems including ERP, MES, inventory management and supply chain management. A leading IoT edge platform will provide edge-based integration with these types of existing operational systems to help ensure business continuity and access to real-time machine data.

Cloud-based orchestration capabilities to support device lifecycle management
Enterprise IoT systems need an edge platform with cloud-based orchestration capabilities to provide a centralized set of management and oversight functions supporting connected devices. An often overlooked yet critical aspect of distributed IoT platforms is their ability to manage and orchestrate newly deployed technologies and processes associated with connected devices. In order to harness the true value of IoT, an IoT platform has to provide a set of centralized, efficient and scalable tools for orchestrating the edge- and cloud-based requirements of connected assets.

The cloud-based orchestration provided by IoT platforms addresses provisioning, monitoring and updating requirements of connected assets. First, to simplify on-site deployment and add a level of security, a platform should provide factory provisioning capabilities for IoT devices. These API-based interactions allow a device to be preloaded with certificates, keys, edge applications and an initial configuration before it is shipped to the customer. This greatly reduces the amount of on-site work and troubleshooting that will be required to get the device online. Second, once the device is deployed and operational, the platform should monitor the device using a stream of machine and operational data that can be selectively synced with cloud instances. Third, using over-the-air update capabilities, the IoT platform should securely push updates to the edge. This includes updates for edge applications, the platform itself, the gateway OS, device drivers and also updates for devices that are connected to the gateway. This allows virtually all aspects of a device’s lifecycle to be managed centrally and gives the enterprise complete control over a locally, nationally or globally distributed IoT deployment.

Hardware-agnostic scalable architecture
Enterprise IoT systems need an edge platform with a hardware-agnostic scalable architecture to support a heterogeneous mix of deployed devices at scale. Today, most enterprise information technology environments are made up of heterogeneous assets from different makers, each with a unique set of capabilities. IoT deployments are no different. Actual IoT deployments use equipment from several vendors. And over time, systems tend to amass a mix of components with each subsequent launch.

IoT platforms that provide leading edge capabilities are capable running on a wide range of gateways and specialized devices. IoT hardware is powered by chips that use ARM-, x86-, and MIPS-based architectures. Using containerization technologies and native cross-compilation, the platforms offer a hardware-agnostic approach that makes it possible to deploy the same set of functionality across a varied set of IoT hardware without modifications. This improves performance and reduces the technology and labor costs of maintaining multiple versions of production software and hardware.

In addition, visionary platform vendors employ the same software stack at the edge and in the cloud, allowing a seamless allocation of resources and ensuring that edge-based operations are not limited by cloud-based tools. Platforms that are capable of shifting resources between the edge and cloud are better suited at meeting anticipated and unexpected application demands. This makes the overall system more scalable by improving resiliency and operational efficiency.

5. Comprehensive analytics and visualization tools
Enterprise IoT systems need an edge platform with comprehensive analytics and actionable visualization tools to deliver insight to a diverse group of stakeholders. The most valuable element of an IoT system is the insight that it generates for the enterprise, but distilling that insight from copious amounts of machine data is extremely difficult. Due to resource, latency and bandwidth constraints, a lot of the data generated at the edge must be processed and analyzed at the point of generation. IoT platforms that fully support the edge with analytics and visualization tools will enable an enterprise to analyze data, generate insights and provide actionable visualizations for end users.

IoT platforms with leading edge capabilities will offer an open and modular approach to edge analytics. Out-of-the-box edge platforms can aggregate data and run common statistical analyses. For capabilities that require specialized analytics, the platforms should make it easy to integrate leading analytics toolsets and use them to supplement or replace built-in functionality. Then, leading IoT platform vendors will enable edge data to be visualized and actioned on a set of mobile-ready customizable and interactive dashboards suitable for different end users. This makes it possible for a truck operator and a fleet manager to access interactive dashboards that deliver a combination of useful information and relevant controls for each of their respective roles. For development of other types of bespoke presentation layers, customers should be able to select their own best-of-breed visualization or application provider.


Enterprises and the public sector worldwide are looking for ways to increase security, improve productivity, provide higher levels of service and reduce maintenance costs. Yet, enterprises face many challenges when choosing to deploy an IoT technology. These challenges can impact overall IoT deployment costs and timing. So many enterprises are using IoT edge platforms to improve their critical business process while overcoming these deployment challenges.

Enterprises should select leading IoT edge platforms that have five key capabilities — extensive protocol support for data ingestion, robust capability for offline functionality, cloud-based orchestration capabilities to support device lifecycle management, hardware-agnostic scalable architecture and comprehensive analytics and visualization tools. Platforms that meet these requirements will simplify the short-term deployment experience while offering long-term flexibility as enterprises choose to innovate with new IoT services.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

December 12, 2017  3:34 PM

Achieving mastery amid the churn of cloud IoT development

TJ Butler TJ Butler Profile: TJ Butler
cloud, Internet of Things, iot, IoT applications, IoT devices, lifecycle management, Software development

I’ve been doing this software engineering thing for nearly 25 years now. During all but maybe the last five years, I’ve used just a few common design patterns and building blocks to do most of my work. I’m oversimplifying a bit, but I have to admit that the building blocks were pretty similar across a variety of projects. Improvements in hardware capabilities — released about every 18 months or so — were the true driving force behind software advancement. Software design didn’t have to change too much because the hardware enabled it to simply “work better” or “do more.” As a result, I’d say I gained a reasonable sense of mastery building similar solutions over and over. I honed and improved with each iteration while the design and toolchain remained relatively stable.

That time has come to an abrupt end.

The explosion of cloud

The last five years have felt like a different world altogether. Cloud technology has ushered in an era of combined software and hardware innovation at a remarkably fast pace. The explosion of cloud is happening so fast and it’s so wide-reaching that it’s difficult to appreciate. Cloud innovation is enabling developers to do things that simply were not practical or even possible just a few short years ago. It’s amazingly empowering yet unnerving at the same time. Just when you start to gain a sense of mastery, something supersedes it, leaving you with a shiny new learning curve and a tough choice. The choice to use the “latest and greatest” could be your keystone or leave you with a pile of technical debt.

The fact is that I’m spending less time, almost none, futzing with the physical stuff. This allows me to spend nearly all of my time innovating at the application level. That aspect is fantastically liberating. Less time setting up means more time focusing on core application value with quicker iterations between releases. This focus on core application value is happening across several layers of the stack. Everyone is wasting less time with setup, leaving more time to think and truly innovate. This has generated an enormous wave of new tools, services and capabilities which are, in fact, fueling each other.

The reality of compounding innovation and microservices

Building innovation on top of innovation has enabled leaps of progress in a short period of time. The net effect is a layering of new applications on top of new services, on top of new hardware, often pulled together with new connectivity. That’s a great deal of “new.” Significant improvements in process have helped minimize risk. However, it’s worth noting that nobody has much experience managing all of these blocks working in concert over time.

The whole point here is that this change is happening quickly. It doesn’t leave much time to gain mastery or learn from mistakes before it changes or is replaced entirely. That churn can equate to outdated components left scattered throughout a distributed solution. Updating something in production may be something like a scary Jenga tower of technical debt. That’s where engineers pick the least risky component to update so they don’t bring down the production system.

Handling scale is only part of an IoT technology. It’s equally as important to maintain and improve that technology over time. It’s especially so in the case of IoT, where a device has a lifespan which will likely span several generations of the supporting technology. The pilot phase of an IoT system often deprioritizes lifecycle management. Don’t let that tower get too tall before considering how you will manage change.

The churn of cloud IoT development

If you feel like your development skills are falling behind despite the fact that your skill set has broadened, you’re not alone. The current pace of development is unprecedented during my time. I’m hearing similar perspectives from colleagues doing cloud development. There’s this constant buzz that you’ll get left behind if you’re not using the latest “cool tool”. Cloud tools and services used in IoT systems are changing so fast that it’s exceedingly difficult to gain mastery and stay current at the same time.

We should expect this wave of innovation to continue and get even faster. The overwhelming advice is simply to get good at designing for change. The reality is that we have to embrace and build for it. It seems this realization of change is what has fueled the microservices buzz, which, in part, helps isolate the impact of frequent updates or “churn” of underlying components. Simply put, it’s easier to manage change for a small service. Designing smaller, functional components using skill set-proficient teams can help mitigate lack of mastery for something new. Limiting the scope of the service or component helps those teams “get deep” fast without having to understand all of the details of a big complex technology at once.

The age-old guidance to take the time and consideration to build a strong foundation still holds true. Just make sure that foundation is on castors so you can swap it out or move it without tearing down and rebuilding everything on top of it.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

December 12, 2017  3:31 PM

Bluetooth Mesh is redefining what’s possible in connectivity

Mark de Clercq Profile: Mark de Clercq
Bluetooth, Internet of Things, iot, IoT applications, IOT Network, Mesh, Mesh network

This past summer, the Bluetooth Special Interest Group announced a seismic new development in Bluetooth capability: Bluetooth Mesh, a new layer of software that would do away with the traditional point-to-communication method in favor of new “mesh” capabilities that would, instead, enable all of these devices and points of contact to talk with each other.

The announcement came on the heels of the growing prominence of mesh technologies in other wireless applications. Thread, a wireless protocol for smart home networking, and Zigbee, a wireless standard for short-range, low-data functions, are just a few of the next steps we’re seeing in mesh development.

But, mesh networking has, up until now, not been a one-size-fits-all solution for connecting devices. And, that’s precisely why Bluetooth Mesh is aiming to completely change the game.

Routed mesh vs. flooding mesh

There are two types of mesh networks: routed and flooding. For routed mesh, individual devices have designated conversation paths. The conversation between specific devices follows the fastest designated route between points A and B.

Flooding mesh does the opposite: Every device on a flood mesh network can send out signals en masse between all Bluetooth-connected devices in an area. Think of it like the difference between talking on the phone versus speaking through a bullhorn. The original Bluetooth mesh standard prototypes used this flood protocol, but it ultimately proved too challenging due to the deluge of conversations between devices to manage and the drain on power efficiency.

Now, Bluetooth Mesh combines the best of both worlds by delivering a “managed flood” that allows similar devices to communicate with each other in a blanket manner.

Smart homes, smart cars, smart offices

Bluetooth Mesh is casting a wider net than ever, so it’s no surprise that the possibilities for what this means in a user’s day-to-day life are wider than ever, too.

The smart home is one of the most potent use cases. Already the average house is loaded with connected, IoT devices embedded with Bluetooth chips, from smart thermostats to Nest cameras to wireless speakers. But, these are all point-to-point communications, where you only manage one connection with one device at a time. Bluetooth Mesh empowers users to bring all of these devices, and more, together with a single point of control. From their phone, users could remotely control all of the aforementioned, plus TVs, kitchen appliances, lights, garage doors or anything in the home with a Bluetooth chip, all at once.

We can see this same single-point hyper-connectivity in the workplace, too, where managers can remotely control everything from the office door locks and light fixtures to the temperature and the dishwashers. Bluetooth Mesh can bring this web of connectivity to on the road, too, where cars with embedded IoT sensors can effectively speak to each other or to surrounding infrastructure to detect everything from passing cars (so drivers can avoid potential collisions when changing lanes) to upcoming traffic lights, so as to let the driver know how much time is left on the light before it turns red or green.

The approach for developers

The new possibilities being raised by Bluetooth Mesh and its myriad of applications will undoubtedly raise the expectations of end users and manufactures alike, and deservedly so. All of which raises a crucial question: What do engineers need to know about Bluetooth Mesh in order to live up to those expectations?

For one, Bluetooth Mesh means easy replication. If mesh networks are being built off the backs of multiples of the same device, then developers will need to ensure that those devices are built to low-cost at scale, so they can be easily and affordably deployed in greater numbers. Additionally, engineers should aim to accommodate a small footprint. Mesh networks mean devices will need to be fit into a wide array of places, functions and applications, requiring these devices to be easily adaptable and built around a small design footprint.

Finally, low-power usage and high-power reliability must be priorities. Engineers need to take steps to ensure that connected devices are “always on,” in order to avoid dark spots from occurring in a mesh network.

Just scratching the surface

Bluetooth Mesh is poised to redefine what’s possible in connectivity and device-to-device communications. Homes, offices and cars are just the tip of the iceberg. Forward-thinking, innovative manufacturers are already looking ahead to how Bluetooth Mesh can scale up for deployment across factories and manufacturing sites, improving efficiency, productivity and device synchronicity.

It’s an exciting time to be in the connectivity business, one where providers and developers now have the tools they need to both dream big and make it a reality.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

December 12, 2017  12:29 PM

The singularity in the room: The black holes of the IoT/OT world

James Cabe James Cabe Profile: James Cabe
Internet of Things, iot, iot security, IT, malware, security in IOT, Singularity

Edgard Capdevielle, CEO of Nozomi Networks, agreed to have dinner with me in NYC after a long day of meetings and lectures to our partners and customers. When I walked up to the restaurant, Edgard was outside with his phone glued to his ear, and I couldn’t help but overhear his half of the conversation. The gist of it was that IT people were not getting along with the operations people on a specific project. I harrumphed to myself. After many years in the oil and gas industry, I tend to stay away from the subject due to fear for my career.

My lack of fear for my career in other areas had taken me down many paths with some success: servers on rigs to help remediate and rebuild virus-ridden project laptops, voice over IP for large cost savings, real-time video teleport for deep water remote operated vehicles. However, I always steered clear of the SCADA and automation people. We in IT were seen as “soft” operations. If our stuff went down, no one got hurt or died. If they messed up, well, things blew up.

Edgard ended his call and said, “Tough client.” He explained that there had been a clash of zeitgeist between two groups inside his customer’s organization. The security mechanism that his company offers bridges the gap between IT and OT.

“I get it,” I said. “I have dealt with both sides, and I think that the IT guys don’t always have a clue what they are dealing with.” Edgard squinted and I immediately knew I had stepped in it. “Really?” he said. “You’re a network engineer, so I thought you would see it differently.” Edgard opened the door and we walked in. I was about to speak when Edgard held up a finger.

Obviously, we would need some refreshments before the debate.

He sat down, “I’m really surprised that you would take that stance. I want to listen, and then I’ll respond.” I was stunned by such equanimity coming from a CEO, especially when I was attacking his company by inference if not by proxy.

I explained that knowing too much had traditionally gotten me into trouble. I learned at one job that OT people didn’t want me touching their networks. OT technicians were bridging most of their network, and it wasn’t even routed, much less firewalled. I was always a security guy at heart, so this horrified me. But they were more concerned with stuff getting stopped than protecting the network. They had been wrestling with performance issues over wireless and believed that adding security to the mix would simply make it worse.

“You see, in the short term this makes sense,” Edgard deadpanned. “But it is my experience that TCP/IP will change that. Anything that touches TCP/IP automatically changes in order to talk TCP/IP.”

“You mean like a singularity?” I said.

“Singularity? Maybe that makes sense. Yes, it could get sucked into a black hole,” he replied.

“The more positive analogy is the idea of a technological singularity,” I posited. “It means that eventually, everything will not only merge, but the merging will produce a huge explosive move forward in society and mankind. It’s not really accurate to call it a singularity, because it’s actually the sort of critical mass that results in the creation of a star and not its death. But yes, anything that gets within the magnetic pull or singularity of TCP/IP is essentially transformed by it and included. So I suppose that the technological singularity is already here but just quietly sucking everything into it. I guess Scott McNealy was always right, but he just had it backwards. The computer is the network.”

Edgard replied, “You just won my argument for me. While I understand the security and safety issues –which, by the way, is the reason we both have jobs — this is a short-term problem. Now that the network has reached the OT stuff, the OT stuff will change. It has become IoT, whether it wants to or not.”

He had me there.

Edge information systems and OT have started to become networked and thus data-driven. The market sees a gap in the older security systems that have been baked into networks for so long. For example, they are not backed up by automation, nor can they adapt. And they don’t track behavior. That is table stakes for securing IoT\OT. Devices with automation and intelligence should protect dumber devices. This includes aspects of proactive defense, adaptation and behavioral tracking.

However, proactive defense is not something that many companies can do right now. The security industry has been stuck on signatures and protecting concrete resources. But there are pieces of the delivery package that can help detect payloads that have never been seen in the wild before. There isn’t a signature-based detection system that can see those. They require pattern-based detection.

That’s not heuristics. Pattern matching and regression are math. It’s the reason why people make ASICs or co-processors to assist machine learning. If you can do math at wire speed, you are #winning. Which means that proactive defense is math-based detection. The adaptation layer must use different detection methods, such as emulation and behavior, to find the “no-see-ums” like fileless attacks: Java, HTML, PowerShell or any other shell-based scripting language. They can then update the bits that are part of the attack. All of this to grab the tiger by its tail before it escapes.

I don’t know if there is an agreed-upon term for the integration of different types of security systems that work together by design, but it’s what is needed to solve this problem. It is being called a security fabric and an expert system by some. But regardless of what we call it, it is a singularity in security that we must achieve before the whole thing goes nova on us.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

December 12, 2017  9:58 AM

The Jetsons made the internet of things look so easy

Tamara Dull Tamara Dull Profile: Tamara Dull
Consumer IoT, Internet of Things, iot, IoT devices, iot security, Jetsons

Jetsons or Flintstones? Astro or Dino? Rosie the Robot or … wait, the Flintstones didn’t have a household helper, did they? My mom, however, would point out that, indeed, the Flintstones had a least two helpers. Just like when we were growing up, my sister and I begged our parents to buy a dishwasher. “Why?” my mom would ask. “We already have two — dishwasher #1 [pointing to me] and dishwasher #2 [pointing to my sister].” Very funny, mom.

While The Flintstones sucked us into their 10,000 B.C. prehistoric lives, The Jetsons catapulted us into the future — 2062 A.D. to be exact. As observers standing between these two worlds, we saw how their fictional lives were unexpectedly similar to our own. It didn’t dawn on me, however, until I became interested in the internet of things that the prehistoric Flintstones had a dishwasher (powered by an elephant-like animal, remember?) and the futuristic Jetsons drove their own vehicles.

How the internet of things is transforming our lives

We are no longer voluntary observers of this paradoxical Hanna-Barbera world. We are now participants, whether we want to be or not, in this global digital transformation movement, of which the internet of things has a leading role.

I see the internet of things changing our lives in three primary ways. Imagine a dial, if you will, for each:

  1. From analog to digital
    A book you borrowed from the library or the one on your Kindle? An analog watch or a smartwatch? An “old-fashioned” doorbell or a Ring? We all have our preferences and our tolerances for new technology. Some of us prefer to stick to the old “analog” way of doing things, while others cannot become digital fast enough. It’s not a race, though. It’s a journey that we can experience at our own pace.
  2. From dumb to smart
    Slap a sensor on that dumb thing, and it will instantly become smart! That seems to be the rallying cry or M.O. of product managers eager to be onboard the IoT train. Don’t get me wrong: I love smart, but I don’t have time for stupid. Smart hairbrushes, water bottles and toasters. Really? Who asked for these things?
  3. From professional to amateur
    Whereby one might agree that going from analog to digital or from dumb to smart is a forward, progressive move, the shift from professional to amateur sounds a little backwards. Let me explain what I mean.Before the onslaught of “smart things,” we typically depended on professionals to provide advice, install, repair, maintain or replace our “dumb” stuff. With the internet of things, however, especially in the consumer space, there’s an unspoken expectation that we can easily plug and play these smart things into our digital lives with minimal effort.

    However, it just doesn’t work that way. Often, we, the amateurs, need to roll up our geeky sleeves to figure it out. Sure, there are “smart” professionals who can help, but they are not as plentiful or competitive as the “dumb” ones.

It may be cool, but it won’t be easy

I love technology. That is one reason I have been in the high-tech industry for, well, let’s say a long time. Moreover, I love the promise of the internet of things. It brings with it a whole lot of cool, but it also brings a fair share of creepy, and a healthy dose of just plain wrong.

I have to admit: The Jetsons made it look easy — and cool. I never thought I would see “Rosie” in my lifetime, but she is here. She doesn’t roll around, and she doesn’t cook my meals. However, she is omnipresent in my home, and she walks me through recipes, complete with onscreen instructions and videos. I call her Alexa.

What the Jetsons never showed us, though, is the creepy or just plain wrong gobbledygook that sometimes accompanies the cool. Whether we like it or not, the internet of things is making privacy freaks and security geeks out of all of us; plus, we need to understand the different ways our smart things can communicate with each other.

That is one tall order, and it is only the beginning.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

December 11, 2017  2:19 PM

Tragedy of the commons: Why IoT regulation may be a necessary evil

Lars Lydersen Profile: Lars Lydersen
cybersecurity, Internet of Things, iot, iot security, regulation, Regulations, Security, security in IOT

What can sheep teach us about securing IoT? To understand the dilemma represented by the need to have secure devices, think about the problem in terms of collective ownership, like sheep grazing in a commonly owned pasture.

In 1968, an evolutionary biologist named Garret Hardin published a paper in the journal Science with the title “The Tragedy of the Commons.” In it, he described a scenario in which the land provided adequate sustenance for the herd, so long as the number of sheep was kept in check. If each person who grazed on that land acted in their own self-interest and increased the number of sheep they sent to pasture, the land would eventually become insufficient to support the population and, in turn, would be overgrazed to the point where it would it would be unable to support the community that relied upon it. The problem stems from the fact that no single entity in the community is incentivized to take care of the pasture and, as a result, everyone suffers.

Over the past 10 years, the internet has seen an explosion of connected devices that can deliver YouTube to your various screens, unlock doors, adjust temperature from a distance and transmit energy usage to your local utility. And just like the pasture, the internet is a “commons” that has benefits and drawbacks because no one controls it.

While we all benefit from the comfort and convenience afforded by smarter, connected devices, the lack of security of these same devices comes with a downside. Though certainly not an isolated case, the Mirai attack occurred in late 2016 and used IP security cameras that were only secured with a default factory password that could not be modified. These cameras could not be secured by users even if they wanted to do so. The hackers in this case patched the security hole, presumably so no one else could take control of the password, and exploited it to take control of the IP cameras, using their bandwidth to bring down one of the biggest name services on the internet. These name services are the equivalent of the Yellow Pages of the internet. Web services rely on them to talk to one another. The attack caused several high-profile services like Twitter, Netflix and Reddit to go offline and infected an estimated 500,000 devices.

The question at hand is this: Who is incentivized to secure IoT? Should the companies producing connected chips be responsible for enabling secure devices? Should responsibility fall to the manufacturer of the devices, like the folks who make thermostats or cars? Or do we need government regulation to set the baseline for what is acceptable?

To have the government look at IoT security would mean someone is taking responsibility for management of the “internet commons,” but there are challenges on both sides of regulation. Too much has consequences, as does too little.

In a scenario where there is overregulation, the government could go the route of specifying that IoT products require certification and include advanced security features. An IP camera might require a sophisticated and hardened remote management system to upgrade the security during the product lifecycle. The camera’s manufacturer would be required to go the extra step of certifying for security, beyond the UL and FCC certifications it is likely to receive today. A certification typically goes beyond product features, and would require an organization and processes to handle the security for the lifecycle of the product.

All this extra security and certification adds cost and lengthens the time it takes for a product to get to market. For large companies and expensive products, this may be manageable, but it does present barriers to entry for small companies or low-cost/high-volume products, such as connected lightbulbs or window contact sensors. And a lot of the innovation comes from small companies with new ideas, so barriers of entry clearly thwart innovation.

On the other hand, if we stay in a mode of no regulation, the Mirai attack would likely be the first of many. In this scenario, the cyber arsenal of countries could increase exponentially as new IoT devices come online, to the point where the threat of a ballistic missile strike from a rogue nation is easier to understand than the hidden danger of embedded devices being controlled by a hostile agent. Hackers are known to gain control and wait for an opportune time to strike. By accessing billions of connected devices at a granular level — lightbulbs, security cameras, hospital equipment — hackers can be more targeted in who, when and where they attack. This capability has a price that can be sold to the highest bidder and could spawn a black market economy in extortion at levels we’ve never seen.

The tools are out there to take control of a variety of connected IoT devices. Recently, a series of documents released by WikiLeaks, called Vault7, details the specifics on tools stolen from the NSA. The toolbox it released contains hacks for phones and computers, as well as smart TVs and popular internet browsers. That toolbox is likely to expand as more device vulnerabilities are discovered.

In fact, a year ago the exclusive Austrian hotel Romantik Seehotel Jaegerwirt was subject to a ransom event when hackers took control of the connected door locks and held out for payment. The hotel has plans to retrofit now with mechanical locks.

We know today that hackers have access to the U.S. energy grid and there are teams wrestling with how to close security holes, but billions unsecured connected devices provide bad actors with vectors of attack that are nearly impossible to anticipate and defend against.

The dilemma is clear. Too much regulation could slow innovation and increase cost for the IoT. Too little and the price for IoT connectivity will be too high for widespread adoption.

So what is the right level of regulation? It’s likely to be a balance of security versus acceptable risk. Today the U.S. government is urging semiconductor vendors and manufacturers of IoT devices to take cybersecurity into consideration during the design phase. It is also advocating for post-sale and lifecycle monitoring of connected products to detect and guard against vulnerabilities.

As the government is on the verge of requiring minimum security for connected devices in Federal buildings, it seems to be counting on the purchasing power of the government to be a force for change. As regulations for IoT security are developed, here are three principles we’d like to see applied:

  1. The government should be proactive about planning for regulation. Politics are intrinsically reactive, but it would be best to ensure regulations are not a knee-jerk reaction to high-profile hacks or newspaper headlines.
  2. Regulations and requirements should be vetted and widely communicated by laying out a roadmap and creating a cadence of updates to regulations. In this way, product design cycles can anticipate changes and adapt.
  3. Any regulation should be done with a global perspective and market alignment. Many IoT devices are made for global markets, and if every country invents its own regulations and requirements with subtle differences, it will become very expensive and unmanageable for most companies to comply.

Done well, government regulation can make us all sleep better. Without the need to count sheep.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

December 11, 2017  12:29 PM

Beyond the smart building, sentience beckons

Tim Panagos Profile: Tim Panagos
#tenants, Energy Consumption, Internet of Things, iot, IoT analytics, IoT data, Maintenance, Mobile app, Predictive Analytics, Smart Building, Smart contracts, smart home

What would take a building from simply “smart” to fully “sentient?” Smart involves the instrumentation of core systems to provide sensing and actuation that optimize the operations of the property. Sentience takes this a step further, using the building’s smart capabilities to minimize human involvement in ongoing operations and free the building to promote, populate and operate on behalf of its owner. To move beyond smart, a building must acquire the ability to negotiate contracts, manage payments and perform predictive and reactive analytics on its own state. It can access data from the external world and from peer buildings in order to expand its awareness beyond the property and to pull in knowledge and best practices that allow it to adapt, changing its economic or physical environment. It can recruit and manage the service providers who handle everything from marketing vacant units to cleaning bathrooms to repairing a damaged roof. All of these services are then contracted using online advertising, smart contracts and sensors to confirm completion.

Energy usage and acquisition
An instrumented space can calculate historical correlations between measurements of occupancy, outside temperatures, ambient lighting and tenant behavior to forecast the energy needs of a building in the future. Forecasts measured against actual usage can lead to cost savings by allowing the building to actuate down from higher predicted use or actuate up to satisfy tenant expectations. In large organizations, this also allows for commodity hedging, a practice common in the airline industry whereby futures contracts guarantee stable prices for a year or more, reducing price volatility and financial risk. Energy exchanges exist for natural gas and electricity that allow for the payment of a futures price based on a specified volume and period of delivery. With data, energy buying can be timed to maximize savings without sacrificing comfort or requiring massive manual analysis. This will drive more and more buildings to participate in their local energy markets.

Electric generation and brokering
Buildings equipped with electric generation capabilities through solar panels and contingency generators can put these dormant assets to work to generate energy and revenues during building downtimes. By joining together with smart grid deployments, excess energy can be sold back to local microgrids to create revenue and provide resilience and capacity to local electrical grids. Contributing data related to capacity, readiness and demand allows a building to seamlessly participate in smart grid initiatives that help in both the consumption and generation phases of electric distribution.

Proactive maintenance
A fully sentient building will track the lifecycle of all its components, correlating events and correlated data to predict optimum preventative and restorative maintenance schedules. By integrating with a network of maintenance providers, the building can proactively maintain these components in the most cost-effective way — based on the availability of parts and labor and avoiding high-cost peak periods in exchange for vendor discounts. With multiple relationships in place, a marketplace for the services can be created to solicit bids dynamically and award work based on cost, timing and effectiveness. This approach can be applied to routine maintenance of core building systems like HVAC and fire suppression, or episodic upgrades to core assets like roofing and asphalt.

Predictive landscaping
Landscaping can be planned based on weather conditions and the needs of the specific project using the data collected from soil and sun sensors. This allows tasks such as lawn care, watering, leaf blowing, fertilization and pruning to be timed to the needs of the landscape architecture and balanced with the availability of landscaping services. By contracting for services only when necessary, a building can balance indoor/outdoor landscape environment for cost and aesthetics.

Predictive cleaning
Data from sensors that measure such information as foot traffic, external weather, supply inventory and historical conditions can focus on cleaning efforts when and where they are needed, eliminating redundant or unnecessary deployments of your staff and equipment. Integrating with procurement processes can also optimize the availability of cleaning materials to coincide with the performance of cleaning duties and availability of supplies through the supply chain. Minimizing over-ordering can reduce theft and minimize storage needs.

Occupancy optimization
Smart buildings can identify events that correlate with high and low usage patterns for tenants. By providing visibility to areas of overflow and underuse, the sentient building can allow common areas, recreational facilities and other spaces to be reconfigured to suit actual activity (even evolving activity). This, in turn, will increase tenant satisfaction and create incentives to extend leases. Making common areas more accessible and able to more effectively predict overflow can increase their value in the minds of tenants, justifying increases in common area maintenance fees and ensuring that the space is used productively.

Lease justification
Buildings that feature retail space will greatly benefit from metrics that can demonstrate the superior business value associated with a specific space. Foot traffic figures that show traffic patterns can help predict purchase volumes by combining historical traffic data with retail performance metrics from retailers. This can enable a net present value of one space versus another and a new tool for marketing and justifying leasing rates. This can also allow retailers to track the performance of marketing efforts to drive traffic which provides a valuable service that the building could provide to retail tenants.

Healthy building
Buildings where people live, shop and work can impact the wellbeing of their occupants in positive and negative ways. The negative impact of so-called “sick buildings” on human health has been well documented and even litigated. Now it can be quantified and mitigated, too. A sentient building can measure air quality, occupant activity and the performance of core systems like plumbing, waste and HVAC to correlate the activities and conditions that maximize the health of human occupants. It can actively move to improve environmental conditions, creating incentives for occupants to use health facilities or take the stairs rather than elevators, thus creating financial incentives to attract and retain healthy tenants. Connectivity to health and home insurers can allow the building to feed into wellness and occupational health/safety programs to create mutually beneficial relationships. Discounts can reward tenants for positive behaviors and demonstrably reduced healthcare costs or safety risks. Healthier tenants make for better business partners because they chose to stay and participate in the healthy building environment.

Happy tenants
When people have choices, the sentient building can balance their activities to save money and generate revenue with the tenant experience. To do this, it is critical that human sentiment be measured continuously in multiple dimensions. When humans are happy and proud of their environment they behave differently. The building can integrate this data and quantify these behaviors. For instance, tenant social media feeds can be analyzed to determine satisfaction or dissatisfaction with particular building attributes. The radio of those working from home versus those working on-premises can determine which tenants warrant extra attention that can translate to improved productivity. The rate and activity of visitors to the site can be used to gauge whether tenants are inviting personal and business associates into their environment routinely. Shifts in these metrics can provide insight into the impact of operational programs and special events.

Multiple constituents, symbiotic outcomes

Benefits for a building owner
Once instrumented and activated, a sentient building can operate self-sufficiently without the need for a large staff to manage operations. A small set of expert troubleshooters and auditors can replace the army of managers and low-skilled support staff that typically operate conventional facilities. These experts can ensure that the sentient building operates effectively and efficiently and help to manage extraordinary needs that might arise.

Benefits for a service provider
A sentient building demonstrates the actual needs for services based on historical prediction and on real-time awareness to eliminate guesswork from service provision. Sentient buildings are empowered to negotiate for the best service and the best price which opens up opportunities to displace incumbent providers and expand those service vendors with efficient operations.

Benefits for a tenant
A sentient building is an active partner in optimizing your daily interactions, whether they involve working, shopping or living within its walls. The sentient building uses real-time knowledge to tune the environment and manage costs which will maximize your experience. It allows you to plan for your needs and optimize your leasing expenses.

Connecting to the IoT data economy

Energy and energy marketplaces
Dashboard overlays can present historical occupancy with weather and calendar events (weekends, holidays and company events) to demonstrate impacts on energy consumption. Predictive tools can use future weather forecasting and scheduled events to predict energy needs. Robots can monitor energy markets for pricing fluctuations that trigger alerts (via email, SMS and push notifications) to prepay for an appropriate block of energy or trigger electricity generation with a single click of the “Approve” button.

  • Savings up to 40% of monthly energy bills can be had with smart actuation and predictive pre-purchase.

Cleaning and smart contracts
Dashboard overlays can present historical foot traffic and air quality measures with weather and calendar events (weekends, holidays and company events) to demonstrate correlation of impacts on cleaning needs. Predictive tools can use occupancy and weather forecasting to predict cleaning demands to drive staff scheduling. Robots can generate smart contracts with sensor-measurable service-level agreement criteria to solicit bids from three different cleaning vendors to contact for service and pay based on measurable performance. Alerts can be generated for the vendor management when SLA violations are approaching. Month-end performance reports can be fed into smart contracts to trigger appropriate payment based on predetermined SLA performance.

  • Savings up to 30% are available by reducing the ambiguity of cleaning schedules and introducing claw-back terms for SLA violations.

Space value predictor
Dashboards can correlate foot traffic with historical receipts to show the value of a given space versus the predicted performance of competitive spaces. A prospective tenant can use a wizard to model their business and forecast business with a revenue/week view based on historical and projected volumes. Smart lease contracts can be created to manage variable payments based on the performance to the projected business volumes.

  • Improving tenant satisfaction will create a 15% premium for space based on pay-per-performance metrics.

Wellness gamification and discounting
Integrations with health insurance providers can allow tenant companies to demonstrate the healthy behaviors of their staff and the overall health of the working environment, generating discounts along the way. Historical trends of a company can be overlaid with the performance of other companies within the building or similar buildings to gamify wellness by creating competitive views of healthy activity. Use of health facilities, internal stairs, bicycle racks and in-house kitchen facilities can demonstrate measurably beneficial behaviors that indicate thresholds necessary to achieve a monthly discount. Health insurers already awarding discounts and health club incentives can focus financial rewards on companies that actual practice good health. Televisions in the lobby can display the competitive results of the wellness programs by floor and/or company. Dashboards can show managers and employees what behaviors are necessary to achieve discounts.

  • Company health care costs can drop by 25% by encouraging healthy behaviors that impact the quality of the group and draw discounts from insurers. Healthy employees are 15% more productive than unhealthy employees.

Real-time sentiment analysis
Visitors can be encouraged to use their social media feeds to post about their visit to the sentient building. Dashboards can show the new information measured against historical visits, social media mentions and social media sentiment in real time to show an overall metric like net promoter score. Activities of the moment can be highlighted to recommend start/stop/continue activities to positively impact the direction of sentiment. Sentiment changes can be charted against current building conditions like cleanliness, warmth and occupancy to see how routine operational decisions may be impacting tenant attitudes.

  • Pride in the environment is the strongest predictor of lease renewal. Commercial and residential tenants that are measurably happier with their environment drive a drop in costs associated with empty spaces — in some cases as much as 75%. Sentiment is a critical indicator of financial performance over time.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

December 8, 2017  1:24 PM

Key aspects in securing the internet of things

Brian Geisel Brian Geisel Profile: Brian Geisel
Consumer IoT, consumers, Internet of Things, iot, IoT devices, security in IOT, vulnerability management

“Billions and billions” used to be associated with Carl Sagan and his accentuation of how large the cosmos are. Today, it’s about the proliferation of connected “things” and is massively exciting! However, billions of devices also represents an incomprehensibly large number of vulnerability points.

With such a significant threat surface, security is sure to serve as a crucial enabler of IoT. It is vital that security is prioritized if the full extent of the IoT business opportunity is to be realized.

The industry needs to guarantee it can stop hackers and ensure devices coming into a network cannot compromise it. It needs to protect clients’ IT infrastructure and ensure firmware can be updated in a secure way.

This is very challenging, and the industry is still figuring it out. But there are some ways in which we can ensure the security of the devices and make people feel safer about living connected lives.

Be a master of all trades

There are a variety of different experts out there. However, the scope of the potential vulnerabilities within any IoT device is so vast that your team really needs people that can cover every bit of ground.

The good news is that there are also an incredible amount of technologies, all of which have different benefits and issues for different features and functions.

As a result, your security team really needs to be a jack of all trades, and master of all. If you’re a master of none, there are security holes everywhere. You need a group that has all the relevant specialties, and a product architect that can see the whole.

Build security into your top-level design

It is far too common for IoT manufacturers to think that security is something that can be addressed down the line. It is not. Security needs to be built into your product development process right from the beginning, at the design phase.

Furthermore, for each IoT system, it is vital to look at the particular things that need to be secured. This will vary on a device-by-device or client-by-client basis and entirely depends on what components are involved in each case. There is no one solution to IoT security. It is different for every device.

Security needs to be properly addressed from the very beginning of the development process, which in the long run saves time and aggravation. Some companies don’t take it seriously enough, and the repercussions of this are huge.

Educate consumers

Given that many manufacturers are not yet getting serious about security, consumers are at risk. Yet the evidence suggests most are not yet well-informed about the risks associated with their connected devices.

This is damaging to the industry. There is little financial necessity for such manufacturers to address these gaps. There are plenty of private and government initiatives afoot to tackle the awareness problem, but manufacturers that do take security seriously need to do more.

Those that have focused strongly on security need to ensure their customers are aware of it. They also must provide, alongside the product, detailed information on the importance of securing the devices and how they can play a part in doing so. We haven’t touched on privacy, but providing detailed privacy policies also helps. It can educate users on exactly how their data will be used, which is important as well.

By paying attention to the details, we can help improve products and devices that are being released today. Therefore, if we all focus better on security, we can bring awareness to the issues. Ultimately, that will result in a more secure world where we don’t sacrifice security for functionality.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

December 8, 2017  11:48 AM

Are you bored with IoT predictions?

Francisco Maroto Francisco Maroto Profile: Francisco Maroto
Internet of Things, iot, IOT Network, IoT platform, iot security, Predictions, trends

At the end of the year, analysts, enterprises, experts and opportunist make many internet of things predictions. I have been collecting these predictions for years and can confirm there were as many successes as there were failures.

2017 predictions: The main conclusions

One initial conclusion this year is that luckily there is less hype around IoT. The good news is that year after year, the internet of things is growing worldwide and despite the fact that we are far from reaching many expectations, we are on a journey that has just started. Let’s not fool ourselves; IoT is still in its infancy in terms of dollars and deployments, and that can’t last much longer before market frustration sets in. It is true that the IoT industry has not exploded yet; the acceleration many of us expected this year did not happen, but I see more optimism for 2018.

Large companies such as Cisco, Dell, HPE, SAP, Google, AWS, Intel, ARM, Microsoft and Google continue investing in IoT and many startups are doubling down on the space as well.

The barriers for IoT adoption have been many and well-known. We can be assured that IoT is not yet ready for mass deployment, but please have no doubt that the market will scale up.

Some challenges remain in IoT. For instance, we continue to be worried that there will be a large-scale IoT security breach, and the battle among low-power wide area network (LPWAN) technologies and IoT platforms is far from over.

Additionally in 2017, other terms like edge computing, fog computing, blockchain and artificial intelligence became mainstream. We also saw adoption grow in industrial sector rather than the consumer sector. Finally, we saw this year that recruiting is a challenge for organizations with IoT initiatives.

What will happen with IoT in 2018?

According with Ericsson, in 2018, mobile phones are expected to be surpassed in numbers by IoT devices.

Other main trends in the IoT and IIoT space in 2018, as you can imagine, will be LPWAN, edge computing, AI on the edge and Blockchain. It seems that 2018 will be the year when AI and IoT will converge. But it will also be the year in which CIOs will be busy integrating device management into overall IT infrastructure in a way that doesn’t overwhelm the organization. This is where the adoption of application robots, natural language processing and AI automation of processes will come into their own, offering intelligent management of IoT deployments cheaply and efficiently.

However, 2018 will not be the year of blockchain and IoT, because although blockchain-based IoT adoption will rise to 5%, blockchain is not yet ready for large-scale deployments requiring reliability, stability and seamless integration with existing technology infrastructure.

To reinforce the ongoing investment across the industry, Gartner’s Strategic Trends for 2018 back up the focus on IoT with intelligent things, digital twins and cloud-to-the-edge all making the list for the coming year.

On the other hand, Forrester affirms that 2018 will be the year in which the internet of things finally moves from experimentation to business scale.

Forrester also predicts that IoT platform offerings will begin to specialize in “design” and “operate” scenarios, and IDC predicts that new IoT applications built by enterprises will use an IoT platform that offers outcome-based functionality based on comprehensive analytics capabilities.

Chris Matthieu, director of IoT Engineering at Citrix pointed out that “vehicles will continue to disrupt markets in human transportation, agriculture, logistics, etc. These vehicles are becoming mobile (edge) data centers on wheels processing tera/petabytes worth of sensor data to react in real time to surrounding conditions.”

Almost everyone predicts more cyberthreats in 2018, which will be a challenging year for the IIoT industry. Hackers know that these companies are now online and more connected than ever, which increases vulnerability. In 2018, we will see the first medical IoT hack leading to stolen data. We will also see continued merging of traditional safety and IT security.

Marketers in 2018 are going to experience a massive increase in the number of digitally connected devices, which will certainly change the game for marketers across the globe.

To end this article, I will give one prediction of my own. In spite of the fact that I am not on this list of the 17 experts telling the most exciting 2018 IoT trends, I hope that 2018 will finally see IoT move from experimentation to business scale.

Thanks, in advance for your likes and shares!

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

Forgot Password

No problem! Submit your e-mail address below. We'll send you an e-mail containing your password.

Your password has been sent to: