IoT Agenda

May 17, 2017  3:34 PM

Why IoT product design is not just the product team’s job

Jessica Groopman Jessica Groopman Profile: Jessica Groopman
Consumer IoT, Enterprise IoT, IoT devices, UI, User experience, User Interface, UX

Who cares about UX design in the internet of things? In all likelihood, it’s your product lead. In reality, UX development for connected products and services must be a cross-functional effort spanning everyone from strategy to sales to support and beyond…

Design is no longer a job left to creatives or engineers. As the digital age transforms analog products to connected devices, product companies in every industry are racing to outfit their products with sensors, mobile apps and a host of emerging software capabilities. But to effectively design any connected product or experience is to design the coordination of a whole system — not just a product. This requires product leaders and executives rethink product programs.

Research finds that although product teams typically lead the user experience design process, effective connected product and service design now requires deep collaboration across several disciplines. Product executives, leaders and chief design officers must orchestrate product programs that reach far beyond products themselves. The need for collaboration is rooted in three realities any business pursuing IoT initiatives must consider.

As business models shift from product to ecosystem, UX in IoT must become synonymous with strategy

Building effective IoT products is about designing products as interfaces that can be built upon by the ecosystem. It is about developing hubs of appreciating value through which both users and other companies in can achieve greater services, insights, efficiencies and security over time through integrations, open development and software updates. This requires companies shift mindsets and business models away from analog, product-centric business models to data-driven service-centric business models.

Such business models require UX design be foundational to strategy development for a number of reasons. First, design is no longer purely aesthetic or fixed. Instead, user experience design should evolve as user objectives are identified and refined. Through software updates and integrations, connected products can appreciate over time, into new use cases, potential user segments or business partnerships. Second, user experiences in the digital age must span multiple devices; to remain competitive, businesses must (re-)envision the role of user interface as inextricably linked to any and all interactions a brand and user will ever have, not just “right now” interactions. Third, to design an effective IoT product is to build an ecosystem, to enable other products to use your product interface to provide greater value than they are able to deliver alone.

Learn about how Adheretech, a connected pill bottle, combines design with strategy by crafting interface and workflows based on each user type: patient, doctor and pharmacist. The common theme here is that both digital strategies and UX have a shared objective: to design an ecosystem of integrated context. This requires product leaders and executives rethink the very composition of product development and collaboration.

IoT product design requires multiple business units come together

Smart connected business opportunities cannot and will not come to fruition in silos or even single organizations. Alignment across functions becomes critical when the product itself becomes less of an endpoint and more of a vehicle through which services are offered. As such, it involves:

  • Strategy: Aligns objectives, proposition, audience, functionality, partner strategy
  • IT and security: Coordinates and safeguards hardware, software, systems and security across all components, data and technology landscape
  • R&D: Leverages product data for product optimization, also identifies opportunities for service innovation bridges current designs with new capabilities
  • Marketing: Contextualizes and communicates value proposition unique to function, persona, platform, phase in customer journey, etc.
  • Support: Ensures continuity of service, repairs, communications, satisfaction, training across internal and external support structures
  • Sales: Identifies pain points product/service [data] actually solves and facilitates automation of appropriate replenishment
  • Partnerships: Offer external context, relationships, support for user-centric improvement

Given the role of data in connected product business models, product leaders must ensure structures are in place to leverage other functions’ inputs, integrations and actions. If a product goes down or malfunctions, such an event might require support, IT intervention, partnerships responsible for maintenance and potentially security. Collaboration across these groups is critical to:

  • Deliver continuity of user experience across channels
  • React with speed, personalization and safety when issues arise
  • Offer “preemptive” services like upgrades, replenishment, proactive repairs
  • Ensure products do and say what the user wants them to do
  • Support ongoing product optimization
  • Identify areas of inefficiency, risk or new opportunity

Such coordination doesn’t just benefit user experience. Insights gathered and knowledge shared across teams can be vital for identifying blind spots, risks, inefficiencies and opportunities to improve operations, supply chain, training, security, etc. Again, design informs strategy.

Design disciplines themselves must come together

It’s not just an array of different lines of business that must come together, coordination within and across various design disciplines is the only way to account for the diversity in skillsets needed. After all, different design disciplines contribute different design skillsets to product development.

  • Graphic/visual/UI designers: Develop screen, look and feel of graphical user interfaces
  • Interaction designers: Develop architecture and behaviors for devices and associated services
  • Product and industrial designers: Develop physical form factor, capabilities, hardware, use
  • Services designers: Coordinate integration of touchpoints and services across customer lifecycle
  • Systems designers: Define and develop interusability across multiple devices, services, networks, etc.

The components of product design in an IoT context — hardware, firmware, software, security, systems, services, graphics, content, etc. — transcend traditional disciplines such as industrial design or human-machine interaction. Designers of graphical interfaces typically have different training and priorities than those responsible for systems interoperability and architectural ontologies. Service designers are accountable for perspectives and business requirements broader than the product itself, yet essential for products to effectively function within systems.

Our research also finds connected product design requires collaboration across multiple diverse disciplines in areas like copywriting, APIs, connectivity protocol selection, power/energy source, ergonomy and particularly when introducing anthropomorphic features.

As products themselves become increasingly differentiated not by hardware and aesthetics, but by software and ongoing invisible services, integrations and updates, products and user experience design require a fundamentally new approach.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

May 17, 2017  12:14 PM

Making IoT more developer-friendly for the greater good of humanity

Don Reeves Profile: Don Reeves
Enterprise IoT, Internet of Things, iot, IOT Network, iot security, product development

Developers today face similar challenges with the internet of things that they did at the peak of the dot-com boom. In the late 1990s and early 2000s, a variety of solutions had been introduced to facilitate machine-to-machine networking. They had names like CellNet, Hexagram and Whisper; and today they are all long gone. Although these companies delivered some minimum level of functionality, they failed in important ways. Specifically, they were entirely proprietary and too limited in capacity to support a wide range of applications. Had they survived until 2016, they would be ridiculed for their insufficient security, bandwidth capacity and a lack of open standards.

Many of today’s IoT solutions, though, aren’t much better. Take specialty network providers for example. Often referred to as LPWAs, they exhibit certain attributes suited for IoT, such as low cost, low energy consumption, extended range and scalability; however, Adarsh Krishnan, senior analyst at ABI Research, summed up the situation succinctly in a press release the firm issued: “While network operators typically favor non-cellular [LPWAN] technologies for their low deployment and maintenance costs, the lack of standards among proprietary vendors is a drawback to wider adoption of these technologies. The closed ecosystem is limiting market innovation and suppressing year-on-year growth.”

These providers are making the same exact arguments for their proprietary technologies that already lost out years ago in other sectors. With more demand for high-scale connected devices, if these networks cannot sustain data-intensive devices, developers will be discouraged to create and go to market with new solutions. They fear that if connectivity isn’t reliable, and if the industry is lacking in widely accepting open standards and properly supporting security, then their products will swiftly turn obsolete.

IoT developers can unlock economic and social value

Technological advancements are making the IoT product adoption and go-to-market cycles quicker and easier, rapidly driving the need for more developers and new solutions. By 2017, Gartner predicts that 50% of IoT solutions will originate in startups that are less than three years old. Developers can more readily leverage a secure, scalable open standards-based IoT network to develop new IoT devices and services such as smart city, smart energy, resource conservation and other applications for public and commercial use. The marriage of IoT and big data also opens up a myriad of applications, new opportunities and potential uses of these two disruptive technologies. Developers can also further innovate and improve current systems and devices for cities and local businesses when leveraging meaningful data harvested on public IoT networks.

Flexible, open standard networks are the future of IoT

If you look at history, you’ll remember that we did not create separate networks for PCs and for Macs. Well, actually we did … and those proprietary networks all ultimately failed. IoT will be no different. According to Machina Research, adopting standardized solutions for IoT costs 30% of the non-standardized total, a savings of $341 billion worldwide by 2025. Users need to invest in a public IoT network that can serve current and future demands, and standardization creates a larger community of interoperable solution providers delivering more competition, more choice and avoids vendor lock in for developers and end users.

The following are three key criteria for IoT users and developers to keep in mind:

  1. Open Standards and IP — A handful of technology companies have emerged in recent years advocating for widespread adoption of open standards and Internet Protocol (IP) within their respective industries. Many vendors have since followed their lead, particularly in the smart grid space with the adoption of open standards-based IP networking, expressing a shared point of view on the importance of standards. However, not all standards are suitable for IoT. Simply appropriating technologies and standards from other environments, such as the enterprise or consumer spaces, cannot address the unique requirements of IoT to connect critical infrastructure. The standards and specifications need to include support for massive scale, geographic reach across diverse topology, high reliability and long lifecycles. Remember the fate of Wi-Max and others?
  2. Security should not be an afterthought — Multiple layers of security and discreet division of systems and access roles is important to secure IoT infrastructure, so that even if a hacker compromises a device, they will not be able to control entire systems or access other parts of the network (take the recent Dyn DDoS attack for example). Proprietary security solutions are essentially closed systems that depend on keeping certain aspects secret, that when discovered lead to a complete collapse of the security system. Many rely on a “security by obscurity” approach by betting that a limited footprint makes them a less attractive target to hackers and malware, while others assume that 128-bit AES encryption provides plenty of protection. None offer a complete security architecture for critical applications.
  3. “Good enough for now” is not good enough at all — Adopting technology that is “good enough for now” can lead to a siloed environment that lacks the many benefits provided by a common user interface and platform to address all use cases. Some users may question why they need that much bandwidth or performance for their applications. In the early years of smart grid, for example, the industry had the same conversations with clients that noted they might never need speeds faster than 100 Kbps. Today, many are asking for as much as 2.4 Mbps as they scale up to connect millions of devices. Just like with the internet, bandwidth creates its own virtuous growth and innovation cycle.

IoT is showing ROI for many sectors, both private and public

The internet of things is fueling operations in many sectors by increasing productivity, reducing costs and offering companies a more competitive edge. McKinsey Research shows that IoT applications could generate up to $11.1 trillion a year in economic value with as much as $1.7 trillion per year in cities by 2025. There are also greater expectations by enterprises, consumers and citizens for connected entities to be more responsive, efficient and aware, and to do more with the assets they already have. IoT facilitates this by bringing digitalization to some previously “technology resistant” sectors.

As the number of devices with cross-connectivity needs increasingly rise, the demand for more resilient IoT networks to support them will be extremely high. By adopting a public IoT network, municipalities and businesses can benefit from reliable connectivity while gaining a platform for economic growth that will transform infrastructure and improve quality of life. This has already demonstrated the ability to dramatically reduce water and energy consumption, thereby reducing carbon and greenhouse gas emissions. Implementing a public IoT network in cities or states can create new lines of revenue for players in IoT, including developers, device makers, and connectivity and software providers alike.

With IoT delivering dramatically improved outcomes such as cost, energy, water and other resource usage reductions across a variety of industries, developers now have the opportunity to not only say they created another new product — they can say they changed the world for the better.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

May 16, 2017  11:06 AM

Devising new metrics for senior health with the smart home

Raoul Wijgergangs Raoul Wijgergangs Profile: Raoul Wijgergangs
#eHealth #Healthcare IOT #Wearables #wireless medical devices, Consumer IoT, Internet of Things, iot, IoT analytics, IoT applications, IoT data, medical devices, wearable, Wearable devices, Wearables

The U.S. healthcare industry is undergoing seismic changes brought on in large part by a growing greying population. Home-based care and connected aging with smart environments for seniors are gaining traction as pivotal solutions, with the number of skilled nursing homes in the country stagnating for more than a decade. Fortunately many seniors — 90% — prefer to age in place in their own homes.

Seniors who are aging in place still need support from a caregiver, which is most often a circle of family members or close friends — according to the Family Caregiver Alliance, there are about 34 million Americans providing caregiver support. Home health monitoring will evolve further to connect directly to professional evaluation to lessen the need for caregivers. But before that becomes mainstream, more families are considering a smart home to support their caregiving plan. A smart home system for those aging in place has applications beyond security monitoring and environmental comfort. The smart home can now convey wellness through insight of coordination of the sensors, schedule and sensors, schedule and other automation data.

Activity and inactivity metrics

Wearable fitness trackers have made daily physical activity easily quantifiable, yet steps are not always an adequate estimation of health for seniors. Many seniors use a mobility aid, but for chronic conditions that about 80% of seniors have, such as diabetes, arthritis or COPD, mobility tracking cannot represent health or daily wellness. Counting the number of times a senior leaves home is slightly more useful, but is also limited for drawing actionable conclusions.

For caregivers, noticing a lack of activity is often more indicative of a health emergency or other need for assistance. For example, if a loved one habitually wakes between 8 or 9:00 a.m. and by 9:30 a.m. uses the bathroom door, a coffee pot or opens a window, this timing can become meaningful for estimating their wellness from afar. If no regular activities are reported from the smart home system after the routine time, then this could be an indication for the caregivers or healthcare professionals to contact their loved one or take action. Not using the bathroom door could indicate that they have not risen from bed and could indicate the need for assistance, such as illness or an acute health event such as a stroke or diabetic episode. An alert coordinated with daily activity markers is unobtrusive to the smart home occupant and can be crucial for their safety and health.

Patterns are as important as status

When assessing wellness, physicians consider the patient’s four vital signs: respiration, temperature, pulse rate and blood pressure. In some cases a fifth quasi-vital sign is added to track the patient’s level of pain. These readings are taken in real time, but show little trend about general health or wellness. Measurements from wearable devices can provide additional insight through data taken over longer periods of time.

Fitness wearables may have gained traction for tracking exercise, but health and safety wearables have the ability to monitor vital signs over time. Unfortunately, mobile personal emergency response devices have not enjoyed sustained success among seniors — more than a third of users abandon their wearable within three to six months of acquisition.

The smart home, however, does have the potential to be a monitoring tool for senior safety and caregiver support. Two immediate advantages stand out: no need for direct occupant use, and greater insight into the user’s wellness though a broader scope of activities. A simple smart light switch in the bathroom, a discreet motion detector in the kitchen or a water sensor near the shower can tell a caregiver whether there have been changes in activities for daily living and track trends over time. Declines in activity over the course of weeks or months could indicate of a growing condition, which can incite caregivers to proactively act.

Using data over time

While historical activity patterns are critical to gauging senior wellness, short-term deviations are of key interest as well. Inconsistent episodes of significant non-activity around the home or an upswing bath or bed activity may reflect nothing more than a tired day or a late snack. But when seen habitually, these changes can indicate an onset of a potential medical condition or acute health event worthy of medical attention.

In either case, the caregiver needs this information to effectively adapt the care that they’re giving to their loved one. Patterns are extremely useful for caregivers and physicians in identifying conditions that might otherwise be subtle, such as depression, which is not uncommon in the elderly. Unfortunately, many seniors may not notice patterns or signs for alarm, whether unknowingly or through denial. Taken individually, each might have little medical meaning. Observed over time, however, the number and frequency of infractions becomes a pattern. Here again, smart home monitoring can help play a proactive role in home health care.

The healthcare industry recognizes that this application of smart home data will become increasingly critical in assessing wellness and delivering care. The smart home is in the early stages of data harvesting for the caregiving application; however, the sensor technologies and control systems are already available through the smart product ecosystem, Z-Wave. Families can set up a custom smart home in their loved one’s house to provide data that can be used to provide better, more proactive care. Other smart home conveniences such as lighting, temperature control and security can also provide peace of mind to the family, and provide additional benefit.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

May 15, 2017  1:20 PM

Location-based services for the internet of things

Michael Tennefoss Profile: Michael Tennefoss
Internet of Things, iot, IoT applications, IoT data, location, Location Based Services

The power of the internet of things comes from extracting and mining process, business and customer data that are locked inside devices, machines and infrastructure. The results can boost productivity, lower costs and uncover new business opportunities.

IoT data repositories in most enterprises are siloed, depriving the enterprise of valuable insights that can be gleaned by mining broader data pools of contextual IoT data, such as location, users, devices and applications. However, with proper lifecycle cycle governance, this data can be safely and securely shared and that’s when the real benefits of IoT can be reaped.

Figure 1: Contextual data sources

Figure 1: Contextual data sources

From among the many types of available contextual data, location data are particularly valuable. That’s because location-based services enable us to answer three key questions that are applicable across a broad range of applications:

  1. Where am I?
  2. Where are they?
  3. Where is it?

The answers enable us to find and to be found. They let us navigate sites to reach machines and destinations, and let first responders find mustering points and occupants. Location-based services also let us find capital assets and inventory.

Figure 2 shows the many types of IoT location solutions, and the most applicable one(s) will vary by application. There is no such thing as a one-size-fits-all location solution.

Figure 2: The range of IoT location-based services

Figure 2: The range of IoT location-based services

Where am I?

Sports arenas, shopping malls, airports, campuses, logistics yards, hospitals and industrial sites are often very large and difficult to navigate. If someone is delayed or lost traversing the facility, the consequences can range in severity from lost revenue or time to loss of life.

Employees, guests, contractors, public safety officers and visitors can all benefit when a self-navigation solution — commonly called “wayfinding” — delivers them to their destinations quickly and unassisted. Contextual data generated along the way — presence, frequency of travel, recency of a visit, dwell time — contain meaningful, business-relevant information. For example, these data can identify areas in need of maintenance due to wear and tear, optimize rent based on traffic levels, and adjust HVAC systems based on occupancy. The more extensively a wayfinding system is deployed, the wider and deeper the insights that can be mined.

An IoT wayfinding platform typically provides self-guided maps, geofencing to indicate when an area is entered or exited, and push messaging services. The services are enabled by three types of components:

  1. Beacons
  2. Wayfinding application
  3. Cloud service

Beacons use Bluetooth Low Energy to trigger an app when the device comes within range. Beacon range is typically adjustable. The Wayfinding application updates its location with help from the beacons and the cloud service, which can push messages back to the app for marketing and safety purposes. Beacons can typically be managed via the cloud service, through which battery levels can be read and beacon range adjusted.

Figure 3: Typical IoT wayfinding cloud service, application and beacons

Figure 3: Typical IoT wayfinding cloud service, application and beacons

Wayfinding enables contractors, auditors, visitors and guests to navigate sites without assistance, conserving operational and administrative resources. Upon arriving at the target destination, additional information can be recalled/displayed about machines or points of interest: user’s guides, nearby hazardous materials even local services like restaurants.

Where are they?

“Buddy systems” enable a pair or team of individuals to find one another’s location. Typically deployed to improve safety and productivity, buddy systems identify one’s location to authorized users without any manual intervention on the part of person being observed. That characteristic makes buddy systems ideal for monitoring staff in areas without direct line-of-sight visibility — hospitals, big box retailers, logistics yards, transportation facilities and manufacturing plants. The systems can also be used by first responders to identify occupied areas without searching the site, a time-saving feature in the event of a fire or siege.

Buddy systems use the same components as wayfinding systems, and are active so long as cellular or Wi-Fi connectivity is available. To preserve privacy and site security, location data are shared only for a specific site among those who have mutually opted into the system. Users are shown on a digital map together with directions to their exact locations. The systems work underground, in buildings, and in and around industrial plants — all locations in which GPS would typically be unavailable to support traditional mapping applications.

Figure 4: Buddy feature display

Figure 4: Buddy feature display

Another way to track people is via presence detection. Presence is determined by trilaterating the x/y location of a Wi-Fi-enabled device like a smartphone, tablet or Wi-Fi tag. Location can be calculated from service requests that Wi-Fi devices periodically broadcast and from periodic pings broadcast by Wi-Fi tags.

Presence can show when a room or area is occupied, how many people are walking by versus thru an area, dwell times and the recency, frequency and timing of visits.

Where is it?

Trilateration can also be applied to tracking capital assets like forklifts, pallets, chemical reactor vessels and wheelchairs. Machines that use Wi-Fi as a secure backhaul for data communications — barcode scanners, mobile point-of-sale tablets, heart rate monitors, mobile voice over IP phones — can all be tracked using trilateration.

Figure 5: Intrinsically safe Wi-Fi tag and Class 1 Division 1 Wi-Fi access point

Figure 5: Intrinsically safe Wi-Fi tag and Class 1 Division 1 Wi-Fi access point


Pallets, wheelchairs and other assets that lack built-in Wi-Fi can be fitted with Wi-Fi location tags. Widely used in healthcare, manufacturing and safety applications, tags are available in many different forms including with intrinsically safe packaging for use in explosive environments. Tags are very adaptable: they can be strapped to newborn infants, worn on a belt loop by contractors and even embedded inside other devices. Tags provide a simple and easily deployed means of locating things across a broad range of use cases.


Unlocking siloed contextual IoT data helps businesses transform data into actions that improve efficiency, productivity and customer/employee experiences. Location data in particular are rich with insights that can be fed to analytics, machine learning and business intelligence applications.

By boosting the productivity of human and capital assets, IoT location-based services can drive new business opportunities. In doing so, these services help unlock the true potential of the internet of things.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

May 12, 2017  12:11 PM

The aha about the internet of things: Is your data center ready?

Rado Danilak Profile: Rado Danilak
cloud, Data Center, Data center planning, Data Center power management, Internet of Things, iot, IoT analytics, IoT data

It’s somewhat misleading to say technology advancements are enabling more and more internet-connected smart devices — or “things” — to get to market. Few of these connected devices are truly smart in the sense that your mobile phone or tablet could be called smart. Those tools are indeed mini-computers containing a processor and storage, embedded software and internet connectivity.

By far the majority of IoT devices are, and will be, “dumb.” They will connect to the internet, but their intelligence is in the cloud. The device will permit a measure of interactivity, and then transmit that prompt to a data center, which will respond with the appropriate task and feature.

Consider a home automation gadget like a “smart” light bulb. The bulb records your voice command or reads the command from its companion app, sends that command to the cloud and waits for its instruction to turn on or off. Since this happens near-instantly, the route is somewhat obscured. Even Amazon’s Echo is a dumb listening device that sends signals to the cloud and then streams the music or weather report you requested, combined with Alexa’s simple machine learning or AI technology to perform new capabilities.

It is simply not cost-effective nor practical to build these things with their own intelligence, and consumers will not bear the high price. (If each of those light bulbs cost the equivalent of an iPhone, few could afford to install them in each chandelier.)

As IoT becomes ubiquitous — here’s the aha — we must recognize that devices by and large are not gaining intelligence; rather, it is cloud data centers that are being tasked with delivering more and more intelligence. The devices themselves stay fairly dumb.

The number of internet-connected devices is projected to surpass 20 billion by 2020, with some analysts saying we will reach that number this year alone. This enormous explosion in internet-connected things will need to be matched by a corresponding explosion of processing power and storage in worldwide data centers. This is simply not sustainable.

If there are currently 10 billion internet-connected devices, even doubling that to get to a conservative estimate of 20 billion will require a significantly increased data center infrastructure. The capital costs of that infrastructure, the expanding real estate footprint and not to mention twice the electricity and resources to power it is frankly alarming. Last year, the world’s data centers consumed more energy in a year than the entire United Kingdom, and this consumption already doubles every four years, despite a smattering of hardware improvements that permit greater capacity and performance.

Supporting a mushrooming landscape of IoT devices will require radical improvements in data center efficiency. Piecemeal advances won’t do, particularly considering power consumption and costs of infrastructure proliferation. We need 10 – 20x improvements in processing power and densities.

Those of you in Europe are encouraged to join me at GLOBSEC Future 2017 Forum, May 26 – 28 in Bratislava, Slovakia, to discuss sustainable approaches to solving the problems we face in global data centers. I look forward to bringing home more information on IoT trends and innovations impacting not only the business environment, but the way economies and societies work.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

May 11, 2017  12:54 PM

EIU report finds companies are embracing IoT

Simon Segars Profile: Simon Segars
economist, Enterprise IoT, Internet of Things, iot, IoT hardware, iot security

In my opinion, the Economist Intelligence Unit’s (EIU) Internet of Things (IoT) Business Index 2017 is the most credible research produced so far charting global industry progress in IoT. It follows the EIU’s inaugural IoT Index that ARM sponsored in 2013, and the latest findings show a steady maturing of IoT over the last three years, with companies moving from research and planning into early deployments. It also tells us that more than half of company executives now see IoT as a key enabler of their company’s long term success.

While we know that we are relatively early on the IoT journey, the report suggests one in five companies are now moving out of planning and into rolling out IoT services and products. One in 12 are so advanced it already regards IoT as integral to its operations.

The IoT report

This 2017 EIU IoT report was co-sponsored by ARM and IBM as we wanted independent confirmation of the state of the market. The researchers surveyed 825 global company leaders from a range of sectors from banking to health and energy to infrastructure. More than half of the respondents were C-suite executives with a significant proportion working for firms with annual turnovers of more than $500 million.

The findings tell us there is continuing strong investment in a smarter future, with more than half of the companies surveyed (55%) expecting to make cost savings or generate revenues from IoT products or services by 2020. This is backed up by the boardroom barometer which indicates a positive outlook: two-thirds of respondents reported that their IoT strategy was discussed at board level at least once a month.

IoT is driving business

Confidence in IoT as a business driver now extends to sectors such as construction and agriculture where smart, connected technologies are still in the research phase. And, at the most advanced end, in areas such as IT, technology and retail, the survey highlights a focus on data management and analysis as a key driver of IoT plans by more than one in three companies (38%).

While progress is good, it’s worth acknowledging there are challenges. By comparing the findings from the first EIU report carried out in 2013, the survey tells us that most respondents feel their companies would have been further down the path to significant IoT rollouts by now. The survey gives us a clue as to why that is; emphasizing concerns over security and privacy, and the perception that IoT infrastructure is expensive to deploy and manage.

Addressing the challenges of IoT

These concerns of IoT are real. Taking the issue of security, we have seen recent examples of how hackers can take advantage of unprotected device networks (Mirai Botnet attack, 2016). For that reason, the applications processor — the heart of the chip — must be architected for safety with secure and non-secure world separation that keeps valuable assets such as encryption keys and network credentials fully protected. There are also software requirements that give rise to a trusted environment. The general conclusion is that the historic, and in some cases current, attitude of “deploy and forget” is not acceptable in the IoT world. All devices must be protected by robust and flexible security and be tied into a service enabling lifetime management of updates whether they are dealing with threats or capability improvements.

Learn more about the future of IoT

I’d encourage you all to read this insightful and informative report and to watch this short interview with ARM CTO Mike Muller.

The EIU’s conclusions underline what we see in the market: that IoT is highly strategic to the future of nearly all enterprises and it is progressing steadily in key areas of the business and consumer worlds. It is a ubiquitous technology trend with the potential to transform how millions of companies operate and the survey findings show us confidence is high, investment is continuing and bigger deployments are starting. The time is now to architect a world with a trillion connected devices seamlessly unified in a smart and secure way. This will be a world where anything and everything is possible.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

May 11, 2017  11:44 AM

Bring future-proof IoT solutions to market faster

Justin Rigling Profile: Justin Rigling
Consumer IoT, Enterprise IoT, Internet of Things, iot, IoT applications, IoT devices, IoT hardware, IOT Network

Gartner Research predicted that 8.4 billion connected things will be in use globally this year, a 31% increase from 2016. And it expects this number will grow to 20.4 billion by 2020. Indeed, the firm expects total spending on endpoints and services to reach almost $2 trillion in 2017 alone. As organizations look to capture this quickly growing market, understanding the nuances of IoT wireless design is critically important.

I’ve helped design hundreds of wireless modules for every application imaginable — from bike computers to golf course watering sensors. And I can say with certainty that low-power IoT wireless design is more times than not the area of greatest challenge for IoT product design. The reason? The very concept of where a connected product begins and ends often gets stretched across hardware, firmware, local mesh and device operations in the cloud. Once you fold in details like unit size, cost and power, it is quickly clear that you must very carefully think through your wireless design.

Intentional radiator

To that end, there are typically four stages in the engineering timeline for IoT devices: design, implementation, certification and launch. While that in and of itself is not too dissimilar from the process for other products, if you aren’t careful, the IoT process can really bog down in the certification phase. Let me explain. When you design your own radio, the FCC considers you to be an “intentional radiator.” Although it defines it simply as any device that is deliberately designed to produce radio waves, the implications are not simple at all. In fact, as an intentional radiator, the FCC requires that you comply with CFR 15.249 and successfully pass hundreds of tests.

It is my experience, however, that many companies do not get their design right the first time. The result is that they need to make a change or two. Perhaps they need to alter their antennae, ground plane, RF firmware or board layout. Regardless of the change, any modification requires a new round of testing. This testing ensures that the change did not alter CFR 15.249 compliance. Not only do these tests and retests take months to pass, they can also be quite costly.

Unintentional radiator

The answer to spending months in design and certification work is a predesigned module. Using a pre-certified module changes your classification to that of an “unintentional radiator.” This classification decreases the time and intensity of the certification phase of the IoT engineering timeline. This is because module providers invest in the certification process for you, often shaving four to six months of development timeline.

As you might expect, modules can carry a higher price per unit than a chip-down solution. Despite this, I find that teams that go this route often quickly make up the price difference. Indeed, they start reaping a return on their investment quickly as they aren’t making up for lost opportunity costs. Wireless modules can make the difference between achieving first-mover status or being seen as a “me too.” This is an important point for organizations in the race to bring their IoT product to market as fast as possible at the lowest possible cost.

Future-proof your IoT solutions

The argument I often hear made against time to market comes from engineers who are concerned about developing a category-killer. They want a product that will dominate the market today yet can evolve and dominate over the product’s lifetime. They think their best route is to wait and make sure they have bet on the right technologies and standards. To address that concern, I recommend that organizations look into dual-mode designs, e.g., Bluetooth Low Energy and Thread. Even if you don’t use both modes today, it gives teams room to grow. And it provides a sound foundation from which an engineering team can make a family of products.

Settle on a standard set of technologies and this will allow your team to create a platform from which they can create a family of connected products. This in turn enables you to bring future-proof products to market even faster. Moreover, it makes it easier to address build of material costs and inventory management. Last, I recommend that product design engineers make sure they plan for:

  • Adequate RAM
  • Memory
  • Sensors
  • I/O for future apps
  • International, country-specific requirements

Wireless design is challenging and important to get right. While speed to market is critical, a strong technical foundation is also vital to developing a category-killing, future-proof product. Avoid underestimating the time and effort required to build a robust, certified wireless infrastructure, and consider the use of pre-certified modules. They will help you reduce risk and begin winning business for your new IoT device today.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

May 10, 2017  11:54 AM

In an age of flashy IoT, hidden devices may be the real game changers

Mark de Clercq Profile: Mark de Clercq
Beacon, BLE, Bluetooth, Bluetooth Devices, Consumer IoT, Internet of Things, iot, IOT Network

Most conversations about the internet of things take place under the pretext that it will change our day-to-day lives via an array of flashy devices. However, many of the most impactful IoT advancements in the years to come will likely be unnoticeable to the naked eye.

At its core, IoT represents the peak of connectivity. People and their devices can now share all kinds of data with each other wirelessly, overcoming the physical barriers that previously kept us apart.

Driving this connectivity at a foundational level are sensors and beacons that are able to constantly collect and exchange a wealth of data. Used correctly, this connectivity is potentially life-saving and its importance cannot be overstated. In the case of medical devices, for instance, wearables can gather heart rate or blood pressure measurements and transmit them to medical professionals to analyze the data in real time. Connected cars are able to sense other cars on the road and obstacles to avoid, preventing accidents. Smart cities will be able to improve the safety of citizens and reduce energy consumption.

But there are thousands of other ways IoT will embed itself into the fabric of our lives.

Locating everything

Tile, the leading smart location company, has a range of Bluetooth trackers that make it easier to find lost or misplaced items. Tile’s thinnest tracker, the Tile Slim, uses the DA14580 SmartBond system-on-chip (SoC) to enable its Bluetooth connectivity and add intelligence powered by the chipset’s embedded ARM Cortex M0 processor.

While the purpose of Tile Slim and similar devices is to help consumers keep track of everyday belongings, Tile also opened up its Smart Location Platform to allow manufacturers the ability to easily add location tracking functionality to any physical product. The underlying platform and SoC it’s built on make tracking look simple, when in fact it’s one of the more advanced platforms on the market.

Keeping track of belongings or assets may not seem like the flashiest use case for IoT, but this functionality has the potential to make a bigger impact on our everyday lives than a great deal of IoT products already on the market.

Using trackers to resolve travel nightmares

Take luggage, for instance. Whether traveling internationally by plane or taking a train out to the suburbs, using transit can be a frenzied experience that requires you to juggle multiple belongings, all while trying to make your boarding times.

If your luggage had a built in tracker that synced up with your mobile device, there are a number of potentially harrowing travel scenarios that can be either avoided or quickly resolved. For starters, that moment of sheer panic we all feel when we don’t remember where we put our bag down can, in many situations, be alleviated if the luggage is within close proximity by activating the tracking alarm. This is also true if you’re trying to track down a carry-on that was placed in an overhead compartment away from your seat — activating your tracker’s alert once the plane has begun de-boarding will take the guess work out of identifying the correct overhead bin.

These use cases pale in comparison to what happens when our worst luggage nightmares come true. According to SITA, the world’s leading specialist in air transport communications and information technology, nearly 1.4 million pieces of luggage were lost or stolen by airlines in 2015, resulting in a cost to the industry of $2.3 billion. While Bluetooth LE trackers have a limited proximity, items affixed with a Tile device can be reported stolen on the Tile app, which links up all Tile users and alerts the owner to the location of a missing Tile-affixed item once a fellow app user has come into range.

This way, if an airline has lost track of your luggage, you can be empowered to take some of the recon into your own hands by receiving an alert anytime one of the many Tile users is within proximity of your luggage.

Trackers on bicycles can help keep you moving

This same functionality for missing items is useful when it comes to bicycles. As the primary mode of transportation for many people — and hardly a cheap item to replace — it comes as no surprise that more than 1.5 million bikes are stolen annually.

The same app functionality that can help connect lost luggage to a community of Tile users can also help track bicycles once they are in range of an active Tile application. In some real-life use cases, it’s been the bike thieves themselves that tipped off the tracking beacon, unknowingly alerting the stolen item’s owner and in turn the authorities to their crime.

Trackers can prevent common headaches at home

The stakes don’t need to be high for trackers like Tile to have a noticeable impact on how we live day to day. Remote controls, for example, are arguably the items that get misplaced most in households, sparking familial spats since the dawn of TV. By making it easy to track remotes, the headache of digging between cushions and lifting up furniture only to find the remote in a more obvious location can quickly be erased from our daily routines. That same approach can be used to make finding your keys a snap, so you can go about your day without wasting time. Or it could help to find a parked car in a garage, reducing the stress induced by not finding your vehicle where you thought you left it.

In many aspects of our lives, this technology will help us improve upon many of the base-level flaws that tend to complicate our every interaction. Cutting time out of searching for a remote, let alone locating an expensive piece of equipment or valuable work file, will give us more freedom to find other ways to enrich our lives. Although showier IoT technology will certainly rise to prominence in the years to come, tracking platforms are already making a big impact even in the nascent days of the IoT era.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

May 9, 2017  12:26 PM

Five of the biggest trends in IoT this year

Gavin Whitechurch Profile: Gavin Whitechurch
Consumer IoT, Enterprise IoT, Internet of Things, iot, IoT analytics, IoT data, iot security, Machine learning, Partnerships, Smart cities

2016 was the year that IoT went mainstream. Connected devices are no longer the stuff of industry expert conversations or surprising national news stories; consumers have begun to welcome them into their homes in the form of devices like Amazon’s Alexa.

2017 promises to be the year that we see this acceptance and appetite drive significant evolution, with the smart home market alone predicted to grow to more than 1.4 billion units by 2021, up from 224 million in 2016.

I look forward to many of these innovations being launched at this year’s Internet of Things World later this month. Having worked closely with market leaders and innovators in the IoT ecosystem to bring together this year’s agenda, I wanted to share my thoughts on what the five biggest trends in IoT we should be expecting to come to fruition over the remainder of the year.

1. Security will be of paramount importance — With so many IoT-focused DDoS attacks hitting the headlines over the last 12 months, the vulnerability of a broad, distributed and heterogeneous network of connected devices has become apparent. It’s forcing vendors and leading service providers to join forces to address issues and breaches. Highlighting security capabilities is likely to become a more prominent selling point, especially for those purporting to offer end-to-end IoT solutions.

2. The formation of more strategic partnerships — The end of last year saw several big names announce strategic partnerships to generate new value for their customers and, in turn, themselves. Bosch and SAP announced they’d be aligning their respective cloud and software expertise around IoT, while Cisco said it would be building an intelligent network tailor-made for the IoT market and then allow all of its channel partners to tie in to it. We’ll certainly be seeing more announcements like these over the course of 2017 as organizations team up to open up more opportunities to learn and earn.

3. Better use of big data and machine learning to unlock new opportunities — The real value of IoT is, of course, in the data produced. According to McKinsey, IoT has a total potential economic impact of $3.9 trillion to $11.1 trillion a year by 2025 — if analyzed and used correctly. Over the forthcoming months we’ll start to see further integration of IoT data streams with AI and machine learning engines in order to do so. We’ll also see a shift towards enabling processing and analytics to the IoT network edge, minimizing the need to transport large amounts of data back to the network core before triggering an action or alert.

4. Public sector services start to make IoT waves — Last September, the White House announced a $160 million Smart Cities Initiative funding pot to help communities tackle challenges and improve services through IoT. This is the year that we’ll start to see public sector services make use of that money and make IoT waves. The City of Chicago is already starting to make positive progress with its Array of Things project, whereby it is using connected sensors to measure data on air quality, climate and traffic to act as a “fitness tracker” for the city. Similarly, the District of Columbia has multiple IoT-based projects underway. The most public of these projects are participating in the Global Cities Team Challenge sponsored by US Ignite and the NIST Cyber-Physical Systems Group. Both organizations will be talking about their latest work at this year’s IoT World in May.

5. Leaning on developers to drive innovation — With so much potential to be gleaned from connected devices, enterprises are naturally quick to want to develop an innovative strategy. But as always with technology, their success depends hugely on their understanding and ability to implement. Enterprises will start to realize the value of involving developers more strategically in these efforts, making concerted efforts to reach out to them and make more of their expertise and “startup spirit.” We’re already seeing regular IoT hackathons from established players like Intel and Google, but this will start to infiltrate non-tech sectors.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

May 8, 2017  1:00 PM

The pros and cons of pull and push models for processing IoT data

James Branigan Profile: James Branigan
data flow, Data Management, data pull, Enterprise IoT, Internet of Things, iot, IoT applications, IoT data

Architects of industrial IoT systems face a crucial decision when choosing which model of data flow to use in their design. Their first option, the “push” model, can be simpler to build, reducing the amount of time to release an initial system on which to build enterprise IoT applications. The alternative, a “pull” model, adopts a more centralized approach to data management, reducing the amount of logic required in each application making use of the IoT data.

Advantages of push

In the “push” model, incoming data is streamed to all users and integrated systems. Each application and downstream system receiving the data has its own rules around what data is valid or not and how to clean the incoming flow for use. For simpler systems whose core purpose is around real-time alerts, the “push” model can be the right choice. Each application can look for a specific type of data and trigger actions based on set limits. Rules can be added to each application to transform or ignore data from certain sensors if problems are found, none of which will change the data flowing to any other application.

The power of pull

In the “pull” model, downstream systems using incoming IoT data must ask for what they want, and pull it from a single source: the system of record. Rules about data cleaning and transformation are operationalized at the system level rather than within each application. This system of record provides a single source for everything that happens in the system — including what events have resulted in flagging data as clean or dirty. Rather than stream all incoming data to all users and applications, each consumer only receives the data they specifically request.

For IoT systems whose purpose is to go beyond simple alerts and become learning systems, where operations are not just monitored but also optimized and mined for additional revenue opportunities, data quality is critical. For these systems, the “pull” model for data sharing makes it easier to keep dirty data from reaching downstream applications and jeopardizing data quality across your enterprise environment.

Maintaining control

Clean, trusted data from a central source is important for systems with integrated analytics and machine learning tools. In highly regulated industries like food and healthcare, certain data is required to be collected and reported to government agencies. Especially in IoT, hardware, firmware and software bugs will cause errors in incoming data. In the “push” model, once you push dirty data to all users, you’ve lost operational control of it. You can’t retract it and you can’t clean it. If you have a chain of custody you may have virtual breadcrumbs that allow you to find and clean data once you realize it’s dirty, but you’d have to find and clean it everywhere it went. That’s difficult because a “push” model also encourages you to save copies of the data across your system. How do you clean data that has been distributed “shotgun-style” across multiple data stores? It’s not easy. Finding and cleaning dirty data across your IoT system will be virtually impossible. Fixing a problem in one data store doesn’t fix the same problem in another.

For example, a company operating a fleet of refrigerated tractor-trailers may need to track cargo temperature on a continual basis along its journey. A unified system of record ensures a definitive source of truth for answering these regulatory questions. With a “pull” model, a fleet manager can report where the truck has stopped, what time the doors were opened and at what time the temperature in the cargo hold went out of range of the regulatory standard. When reports show unexpected results, or a device malfunctions, the manager can also track down when a sensor failed, what data from it was used by downstream systems (throwing off calculations), and then clean this data retroactively. In a system based on a “push” model, alerts will be sent when specific triggers are activated (i.e., temperature too high), though the chain of events leading to the situation may be difficult to determine and any false alarms will be problematic to explain to regulators with access to the pushed, dirty data.

A design to match your goals

When evaluating which model of IoT data flow — “pull” or “push” — is more appropriate for your production system, it is most important to match the pros and cons of each to your overall goals. A focus on real-time alerts and independent applications without aspirations for machine learning can be brought online more quickly through a simple “push” design. For systems expected to generate increasing value over time and enable deeper insights into the enterprise, are integrated with back-end CRM, ERP and other critical systems, or operate in highly regulated environments, a “pull” model is likely to provide the most flexible, compliant and long-lived system.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

Forgot Password

No problem! Submit your e-mail address below. We'll send you an e-mail containing your password.

Your password has been sent to: