Yottabytes: Storage and Disaster Recovery

Aug 22 2013   10:36PM GMT

Preparing for Your Next Disaster: the Sun’s Magnetic Flip

Sharon Fisher Sharon Fisher Profile: Sharon Fisher

Time to get out your Disaster Recovery binder. Skip past the sections on “Earthquakes,” “Tornadoes,” “Hurricanes,” “Forest Fires,” “Zombies,” and “Floods,” and stop at the one called “When the Sun Flips Magnetic Poles.”

What do you mean, you don’t have one? Better hurry up. You’re going to need it.

In case you’ve somehow missed the news, our sun is expected to flip its magnetic poles in the next few months. That is, the North Pole will be the South Pole, and vice versa. The sun itself doesn’t move — just the magnetic fields.

While this might sound surprising, it’s actually something the sun does every eleven years or so.

That’s fine, but what does that mean to you? It depends on whom you ask. It ranges from “Well, maybe nothing much, really” to “OMG, WE’RE ALL GONNA DIE!” And nobody really knows.

First of all, we don’t know how severe the associated magnetic shifts are going to be — just like we don’t know ahead of time what hurricane season will be like. Second, we’ve all acquired a lot more electronics in the past eleven years, and nobody really knows what effects the magnetic changes could have on them.

The “nothing much, really” contingent points out that the sun has flipped three times since 1976 and we haven’t had any tragedies yet and there’s no real reason to believe it’s going to be anything different this time.

The OMG contingent says it has the potential of blowing out all our electronics for months or years. “The big fear is what might happen to the electrical grid, since power surges caused by solar particles could blow out giant transformers,” reports National Geographic. “Such transformers can take a long time to replace, especially if hundreds are destroyed at once, said [the] co-author of a National Research Council report on solar-storm risks…The eastern half of the U.S. is particularly vulnerable, because the power infrastructure is highly interconnected, so failures could easily cascade like chains of dominoes. ‘Imagine large cities without power for a week, a month, or a year,’ [he] said. ‘The losses could be $1 to $2 trillion, and the effects could be felt for years.’”

GPSes and satellite systems are also vulnerable. As NASA notes, how’d you like to be coming in for a plane landing or a ship docking by GPS at that time?

A less severe event in 1989 caused power failures in Canada, and almost brought down the power grid on the East Coast. Scientists who studied an even more powerful storm in 1921 in the context of systems today found that a similar event now could cause cascading failures that could even affect the water system.

In addition, the OMG contingent is speculating that the flip could cause another “Carrington Event.”  “The biggest solar storm on record happened in 1859, during a solar maximum about the same size as the one we’re entering,” writes National Geographic. It was discovered by a Scottish guy named Richard Carrington, who just happened to be looking at the sun at the same time it emitted a Coronal Mass Ejection (CME), which acted like a giant magnetic fart. So he knew it was coming. When the fart reached the Earth, all sorts of interesting things reportedly happened.

“Just before dawn the next day, skies all over planet Earth erupted in red, green, and purple auroras so brilliant that newspapers could be read as easily as in daylight. Indeed, stunning auroras pulsated even at near tropical latitudes over Cuba, the Bahamas, Jamaica, El Salvador, and Hawaii,” writes NASA. “Even more disconcerting, telegraph systems worldwide went haywire. Spark discharges shocked telegraph operators and set the telegraph paper on fire. Even when telegraphers disconnected the batteries powering the lines, aurora-induced electric currents in the wires still allowed messages to be transmitted.”

What do you think that’s going to do to your iPod? Not to mention your data center? It could give “flash drive” a whole new meaning.

“In 2008 solar scientists predicted that a Carrington scale solar event today could cause blackouts effecting 130 million people and result in economic losses of ‘$1 trillion to $2 trillion during the first year alone…with recovery times of 4 to 10 years,’” writes Data Center Pro. In fact, the article continues, one scientist predicts a 12 percent chance of a Carrington event in the next decade. It’s serious enough that even Homeland Security is looking into it.

“At the time of the Carrington Event, only the 125,000 miles of wire set up for the nascent telegraph network had the correct properties for the induction of auroral currents,” wrote Eric Gallant, one of the primary experts on the phenomenon with respect to data centers, in 2009. “In 2009, there are many more targets for a geomagnetic storm, including transcontinental pipelines, communication lines and power transmission lines. In addition, our vulnerability to geomagnetic storms is increased because modern infrastructure networks are vastly larger than the simple systems of Carrington’s day. In particular, the electrical properties and extent of our national electric grid has led industry professionals to compare it to a continent-wide antenna for geomagnetic energy.”

Needless to say, if the OMG contingent is right, or if we have another Carrington Event, chances are it doesn’t make much difference what you do; we’ll all be hosed anyway. But if it’s simply going to be a heavier-than-usual sunspot day, here’s some precautions to take before the magnetic storms reach their predicted peak in 2015:

  • Have backup generators of some sort handy — preferably the kind that don’t require electronics to operate.
  • Get UPSes, surge protectors, and so on, and make sure all your equipment is plugged into them. If the situation is severe enough, it won’t help, but it can’t hurt.
  • Gallant recommends locating data centers near the lower latitudes, away from the poles.
  • Pay attention to the news. The nice thing about the sun being so far away from the Earth — aside from the fact that if it weren’t, we’d, like, die — is that we have some warning. While it takes around eight minutes for light to get to the earth, it can actually take several days for a CME to get here, so you have time to, if necessary, unplug things in hopes there’ll still be a grid to plug them back into afterwards.

And get out your binoculars. The aurorae could be spectacular.

 Comment on this Post

 
There was an error processing your information. Please try again later.
Thanks. We'll let you know when a new response is added.
Send me notifications when other members comment.

REGISTER or login:

Forgot Password?
By submitting you agree to receive email from TechTarget and its partners. If you reside outside of the United States, you consent to having your personal data transferred to and processed in the United States. Privacy

Forgot Password

No problem! Submit your e-mail address below. We'll send you an e-mail containing your password.

Your password has been sent to: